注:氧气流量单位“Nm3/h“均是指20℃,0.101MPa(绝压)状态下的流量单位。
设备性能规格表
注:本样本中流量单位“Nm3/h“均是指20℃,0.101MPa((绝压)状态下的流量单位。
低压吸附真空解吸(Vacuum Pressure Swing Adsorption)制氧设备,简称VPSA制氧设备。利用VPSA专用分子筛与干燥剂形成的混合床层选择性吸附空气中的氮气、二氧化碳和水等杂质,令氧在床层末端聚积并收集,在抽真空的条件下对吸附饱和状态的分子筛床层进行解吸,从而循环制得纯度较高的氧气(90~95%)。
变压吸附(Pressure Swing Absorption)制氧设备,简称PSA制氧设备,是一种新的气体分离技术,以吸附剂分子筛为例,其原理是利用分子筛对不同气体分子“吸附”性能的差异而将气体混合物分开。它是以空气为原材料,利用一种高效能、高选择的固体吸附剂对氮和氧的选择性吸附的性能把空气中的氮和氧分离出来。沸石分子筛依据其晶体内部孔穴的大小对分子进行选择性吸附,也就是吸附一定大小的分子而排斥较大物质的分子。这样气相中就可以得到氧的富集成分。一段时间后,分子筛对氮的吸附达到平衡,根据沸石分子筛在不同压力下对吸附气体的吸附量不同的特性,降低压力使沸石分子筛解除对氮的吸附,这一过程称为再生。变压吸附法通常使用两塔并联,交替进行加压吸附和解压再生,从而获得连续的氧气流。
设备组成
PSA制氧设备主要由空压机、冷干机、除油器、吸附系统、氧气缓冲罐、控制系统组成。
1、空压机:空压机为整个系统提供原料空气,根据变压吸附制氧设备的产气量,选择符合设计条件的空压机进行供气。
2、冷干机:空压机对原料空气增压后,高温高压的压缩空气进入冷干机进行冷却、干燥、除杂,得到低温高压的压缩空气。
3、除油器:除油器将低温高压的压缩空气中的油雾去除,防止空气中的油雾对沸石分子筛的寿命造成影响。
4、吸附系统:吸附系统由两个装有沸石分子筛吸附剂的吸附塔和管道阀门等组成。低温高压的压缩空气从A塔底部进入,当流经吸附剂层时,空气中的氮气,二氧化碳,水蒸气等被吸附。氧气则通过吸附床层汇集到吸附塔顶部作为产品气输出。与此同时,B塔处于再生工况,当进行吸附的吸附塔快达到吸附饱和时,在控制系统的调节下,低温高压空气转而进到B塔开始吸附产氧。A、B塔如此交替轮流实现连续产氧的目的。
5、氧气缓冲罐:储存成品气(氧气),并对整套设备起到稳压作用。
6、控制系统:工程师将预编写的阀门控制程序输入到PLC控制器中,通过电磁阀调节各个气动阀的开闭,实现吸附系统在指定的时间内经行吸附、再生。
VPSA制氧设备主要由鼓风机、真空泵、冷却器、吸附系统、氧气缓冲罐、控制系统组成。
1、空气鼓风机和真空泵:鼓风机为整个系统提供原料空气,根据真空变压吸附制氧设备的设计工况,结合用户的使用条件,选择排气压力为符合设计条件的鼓风机供气。真空泵保证整个系统正常解析,使系统处于理想真空状态,使整体设备能连续吸氮产氧工作。?
2、冷却器:鼓风机增压后的得到高温高压的压缩空气,再经过水冷却器将空气温度降到所需的工艺操作温度后,送入吸附塔进行吸附。
3、吸附系统:吸附系统由两个装有沸石分子筛吸附剂的吸附塔和管道阀门等组成。低温高压的压缩空气从A塔底部进入,当流经吸附剂层时,空气中的氮气,二氧化碳,水蒸气等被吸附。氧气则通过吸附床层汇集到吸附塔顶部作为产品气输出。与此同时,B塔处于再生工况,当进行吸附的吸附塔快达到吸附饱和时,在控制系统的调节下,低温高压空气转而进到B塔开始吸附产氧。A、B塔如此交替轮流实现连续产氧的目的。
4、氧气缓冲罐:储存成品气(氧气),并对整套设备起到稳压作用。
5、控制系统:工程师将预编写的阀门控制程序输入到PLC控制器中,通过电磁阀调节各个气动阀的开闭,实现吸附系统在指定的时间内经行吸附、再生。
工作原理
PSA制氧机:吸附剂(称为沸石分子筛)是PSA制氮设备的核心部分,利用气体介质中不同组份在吸附剂上的吸附容量的不同,吸附剂在压力升高时进行选择性吸附,在压力降低时得到脱附再生,如此交替循环连续不断地制取产品氧气。
VPSA制氧机:以空气为原料,经空气过滤器进入罗茨鼓风机升压,升压气体经过换热器进行冷却,再进入已经再生完毕处于工作状态的吸附器A。在吸附器A内,空气中的水分等极性分子气体经过干燥剂被吸附,干燥空气再通过锂X型分子筛后氮气组分被分子筛吸附,氧气在吸附器顶部富积进入氧气缓冲罐。同时部分富集的氧气回流至吸附器B内,通过湿式罗茨真空泵对吸附器B抽真空,使得吸附器B内锂X型分子筛得到再生,如此交替连续不断的制取氧气。
Copyright@2020天博TB(商标品牌)体育 沪公网安备31011602001861号 制氮机 制氮设备 PSA制氮机 网站地图